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Abstract. The structure constants of quantum Lie algebras depend on a quantum deformation
parameterq and they reduce to the classical structure constants of a Lie algebra atq = 1. We
explain the relationship between the structure constants of quantum Lie algebras and quantum
Clebsch–Gordan coefficients for adjoint⊗ adjoint→ adjoint. We present a practical method
for the determination of these quantum Clebsch–Gordan coefficients and are thus able to give
explicit expressions for the structure constants of the quantum Lie algebras associated to the
classical Lie algebrasBl , Cl andDl .

In the quantum case the structure constants of the Cartan subalgebra are non-zero and
we observe that they are determined in terms of the simple quantum roots. We introduce an
invariant Killing form on the quantum Lie algebras and find that it takes values which are simple
q-deformations of the classical ones.

1. Introduction

Quantum Lie algebras are generalizations of Lie algebras whose structure constants depend
on a quantum parameterq and which are related to the quantized enveloping algebras
(quantum groups)Uh(g) in a way similar to how ordinary Lie algebras are related to their
enveloping algebrasU(g).

The study of quantum Lie algebras is still in its infancy. There is no fully developed
theory of quantum Lie algebras yet. Instead, the properties of quantum Lie algebras are
being discovered piecewise through detailed investigations of examples. It is hoped that
these investigations will eventually lead to the development of a full theory. The process
is similar to the development of Lie algebra theory which also began through the detailed
study of the algebras of orthogonal, unitary and symplectic matrices.

In this paper we give theq-dependent structure constants of the quantum Lie algebras
associated to the Lie algebrasso(n) of special orthogonal matrices and the Lie algebras
sp(n) of symplectic matrices. The case ofsl(n) had already been treated in [5].

Previous studies of quantum Lie algebras [4] have revealed that one could write the
quantum Lie bracket relations in a form very similar to the classical ones. Namely, choosing
a basis consisting of root generatorsXα and Cartan subalgebra generatorsHi the quantum
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Lie bracket relations are
[Hi,Xα]h = lα(Hi)Xα [Xα,Hi ]h = −rα(Hi)Xα
[Hi,Hj ]h =

∑
k

fij
kHk [Xα,X−α]h = −

∑
k

gα
kHk

[Xα,Xβ ]h =
{
Nα,βXα+β if α + β is a root

0 otherwise.

(1.1)

The main differences to the classical relations are:
• All structure constants now depend on the quantum parameterq.
• Every classical rootα splits up into a left quantum rootlα and a right quantum root

rα which are related byq → 1/q.
• The quantum Lie bracket [Hi,Hj ]h between two Cartan subalgebra generators is in

general non-zero.
• The quantum Lie bracket isq-antisymmetric.
As explained in the discussion section the results in this paper allow us to write these

quantum Lie bracket relations using only thelα and theNαβ .
The notion of a quantum Lie algebra as an ad-submodule of the quantized enveloping

algebraUh(g) which transforms in the adjoint representation was introduced in [4]. In that
paper it was shown that the structure constants of a quantum Lie algebra possess a number
of symmetries, many of which areq-generalizations of their classical counterparts. These
symmetries were derived by exploiting the Hopf algebra structure ofUh(g).

Another approach to quantum Lie algebras derives from the notion of bicovariant calculi
on quantum groups [18, 1, 2]. There one defines a quantum Lie product on the dual space
to the space of left-invariant one-forms, which is an ad-submodule ofUh(g). However, in
this approach it was not known how to ensure that the resulting quantum Lie algebras have
the same dimension as the corresponding classical Lie algebras except in the case ofgln
and, after projection,Al [10, 15, 7].

In [5] the authors constructed the quantum Lie algebras associated toAl . They first
formed a submodule ofUh(Al) whose elements transform under the adjoint action (defined
onUh(Al)) in the vector⊗dual-vector representation. They then projected this module onto
the adjoint representation inside vector⊗dual-vector so that the resulting ad-module was of
the correct dimension. While this approach can be applied to the construction of quantum
Lie algebras associated to any simple Lie algebrag, it is a very tedious way of obtaining
the structure constants and we present an alternative method here.

Our approach to the determination of the structure constants of quantum Lie algebras
relies on the observation [6] that the quantum Lie bracket is an intertwiner from adjoint⊗
adjoint→ adjoint where by adjoint we mean the adjoint representation ofUh(g). Thus
the structure constants are given by the corresponding inverse quantum Clebsch–Gordan
coefficients. In this paper we describe a practical procedure for determining these Clebsch–
Gordan coefficients. This allows us to explicitly calculate the structure constants of the
quantum Lie algebras associated to the classical Lie algebrasBl , Cl andDl .

This paper is organized as follows. In section 2 we recall the definitions and some
properties of quantum Lie algebras. We then explain our method for determining their
structure constants in section 3. In section 4 we introduce an invariant Killing form on
the quantum Lie algebras and observe that on the basis vectors it takes values which are
surprisingly simple deformations of the classical ones. Section 5 contains our results for the
structure constants of the quantum Lie algebras. By using the Killing form to lower indices
we are able to give concise expressions. In section 6 we derive some further relations
between the structure constants, which we have verified using Mathematica [17] and which
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provide a good check on the correctness of our results. In the appendices we give the basic
definition of the quantized enveloping algebrasUh(g) as algebras overC[[h]], the ring of
formal power series inh. Further appendices contain a generalized form of Schur’s lemma,
some background material on Clebsch–Gordan coefficients and the quantum Lie algebra
(C2)h.

2. Quantum Lie algebras

In this section we summarize the definitions for quantum Lie algebras given in [4, 5]. In
these papers two definitions for quantum Lie algebras were given, the resulting algebras
being isomorphic. The reason for the two definitions stems from the fact that we can view
a classical Lie algebrag in two different ways. Either we adopt the perspective thatg is
the carrier space for the adjoint representation of the classical enveloping algebraU(g), this
perspective leads to the so-called abstract quantum Lie algebrasgh. Alternatively, we view
g as a subspace ofU(g). As will be seen later, the quantum Lie algebrasLh(g) deriving
from the second definition are just embeddings of the abstract quantum Lie algebrasgh into
Uh(g).

2.1. Abstract quantum Lie algebras

Classically a Lie algebrag is the carrier space for the adjoint representationπ9(0) of the
classical enveloping algebraU(g). The Lie bracket is aU(g)-module homomorphism from
g⊗ g to g, i.e.

π9(0)(x) ◦ [ , ] = [ , ] ◦ (π9(0) ⊗ π9(0))(1(x)) ∀x ∈ U(g). (2.1)

Furthermore, the following theorem of Drinfel’d [8, 9] provides an isomorphism which
allows the construction of the quantum analogue of the adjoint representation.

Theorem (Drinfel’d [8, 9]). There exists an algebra isomorphismϕ : Uh(g) → U(g)[[h]]
such thatϕ ≡ id(modh) andϕ(hi) = hi .

This implies that if (V µ, πµ) denotes a finite-dimensional irreducible representation of
U(g) then(V µ[[h]] , πµ◦ϕ) is a finite-dimensional indecomposable representation ofUh(g).
(It is important to recognize that theUh(g) modulesV [[h]] are not irreducible. Indeed their
submodules are of the formcV [[h]] with c ∈ C[[h]] not invertible and so Schur’s lemma
is modified, see appendix B.) In particularg[[h]] is a finite-dimensional indecomposable
module ofUh(g). Let π9 = π9(0) ◦ϕ denote the representation ofUh(g) on g[[h]]. Drinfel’d
has shown that this is the only way to deform the adjoint representationπ9(0). With these
observations in mind, a natural definition for quantum Lie algebras is as follows.

Definition 2.1.A quantum Lie bracket is a Uh(g)-module homomorphism [, ]h :
g[[h]]⊗̂g[[h]] → g[[h]] such that [, ]h = [ , ](modh).

gh = (g[[h]] , [ , ]h) is a quantum Lie algebra(viewed as an algebra overC[[h]] with
non-associative product [, ]h).

Such a Uh(g)-module homomorphism [, ]h is unique up to scalar multiples for
g 6= Al . The reason for this comes from the observation that classically the adjoint
representation appears in the tensor product of two adjoint representations with unit
multiplicity. Furthermore, the decomposition of aUh(g) tensor product representation
into indecomposableUh(g) modules is described by the classical multiplicities of the
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decomposition of the correspondingU(g) tensor product representation into irreducibleU(g)
representations. Therefore, by the modified form of Schur’s lemma, the homomorphism [, ]h
is unique (up to rescaling).

2.2. Quantum Lie algebrasLh(g) insideUh(g)

Alternatively g can be viewed as a subspace of its enveloping algebraU(g) with the Lie
bracket on this subspace given by the adjoint action ofU(g). So another natural definition
of a quantum Lie algebra is as an ad-submodule ofUh(g) with the quantum Lie bracket
given by the adjoint action ofUh(g).

Definition 2.2.A quantum Lie algebra Lh(g) inside Uh(g) is a finite-dimensional
indecomposable ad-submodule ofUh(g) endowed with aquantum Lie bracket[a, b]h =
(ada)b such that:

(a) Lh(g) is a deformation ofg, i.e. there is an algebra isomorphismg ∼= Lh(g)|h=0

(b) Lh(g) is invariant underθ̃ , S̃ and any diagram automorphismτ , where∼ denotes
q-conjugation,θ the Cartan involution andS the antipode, see appendix A. Aweak quantum
Lie algebra lh(g) is defined similarly but without the second condition.

By ad-submodule we mean that it is invariant under the adjoint action ofUh(g) which,
in Sweedler’s notation [16], is given by

(adx)y =
∑

x(1)yS(x(2)) x, y ∈ Uh(g). (2.2)

This adjoint action defines an infinite-dimensional representation ofUh(g) on itself. Notice
that classically this definition for the adjoint action reduces to the usual commutator when
restricted to the Lie algebra naturally embedded inU(g), giving rise to the classical adjoint
representationπ9(0).

Proposition 2.1.The adjoint action restricted toLh(g) ⊗ Lh(g) is a Uh(g)-module
homomorphism fromLh(g)⊗ Lh(g) to Lh(g).

Proof. We need to show that∑
((ad(adx(1))a)((adx(2))(b))) = (adx)((ada)(b)) ∀a, b ∈ Lh(g)

which, using the fact that [a, b]h = (ada)b, is equivalent to

(adx) ◦ [ , ]h = [ , ]h ◦ (ad⊗ ad)(1(x)) ∀x ∈ Uh(g).
The left-hand side of equation (2.2), using co-commutativity of the Hopf algebra, can be
expressed as∑

(adx(1)aS(x(2)))(x(3)bS(x(4))) =
∑

x(1)a(1)S(x(4))x(5)bS(x(6))S(x(2)a(2)S(x(3)))

=
∑

x(1)a(1)ε(x(4))bS(x(5))S
2(x(3))S(a(2))S(x(2))

=
∑

x(1)a(1)bS(a(2))S(x(2))

= (adx)((ada)b)

where we have used the Hopf algebra propertyS(y(1))y(2) = ε(y), and the fact thatS is a
Hopf algebra antiautomorphism. �

How are these quantum Lie algebras related to the abstract quantum Lie algebras defined
in the previous section? This question is answered in the following proposition.
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Proposition 2.2.All weak quantum Lie algebraslh(g) insideUh(g) are isomorphic to an
abstract quantum Lie algebragh.

Proof. lh(g) are finite-dimensional indecomposableUh(g) modules. By condition (a) of
definition 2.2, they carry a deformation of the representation ofU(g) carried byg. As
mentioned earlier, Drinfel’d showed that there is only one such deformation of the classical
adjoint representationπ9(0), namely the adjoint representationπ9 = π9(0)◦ϕ carried byg[[h]].
Thereforelh(g) is isomorphic tog[[h]] as aUh(g)-module. Furthermore, by proposition 2.1
the product onlh(g) is aUh(g)-module homomorphism. �

In other words, the weak quantum Lie algebraslh(g) are those embeddings ofg[[h]] in
Uh(g) on which the adjoint action ofUh(g) coincides with the adjoint representationπ9 .

2.3. General properties of quantum Lie algebras

Proposition 2.3.Given the grading of the classical Lie algebra by the set of non-zero roots
R and zero, described by

g =
⊕
α∈R

gα ⊕ g0 [gα, gβ ] ⊂ gα+β (2.3)

with gα = {x ∈ g|π9(0)(hi)x = α(hi)x∀hi}, a quantum Lie algebragh possesses the grading

gh =
⊕
α∈R

gα[[h]] ⊕ go[[h]] [ gα[[h]] , gβ [[h]]] h ⊂ gα+β [[h]] . (2.4)

Proof. The isomorphismϕ leaveshi invariant. This impliesπ9(hi) = π9(0)(ϕ(hi)) =
π9(0)(hi), so that

gα[[h]] = {x ∈ g[[h]] |π9(hi)x = α(hi)x∀hi}. (2.5)

Let Xα ∈ gα[[h]] andXβ ∈ gβ [[h]]. By definition, [ , ]h is aUh(g)-module homomorphism
and so

π9(hi)[Xα,Xβ ]h = [ , ]h ◦ (π9 ⊗ π9)(1(hi))(Xα⊗̂Xβ)
= [π9(hi)Xα,Xβ ]h + [Xα, π

9(hi)Xβ ]h
= (α(hi)+ β(hi))[Xα,Xβ ]h (2.6)

thus [Xα,Xβ ]h ∈ gα+β [[h]]. �

If we now choose a basis for the quantum Lie algebragh, given by {Xα ∈ gα|α ∈
R} ∪ {Hi ∈ g0|i = 1, . . . rank(g)}, then, because of the grading, the Lie bracket is restricted
to the following form:

[Hi,Xα]h = lα(Hi)Xα [Xα,Hi ]h = −rα(Hi)Xα
[Hi,Hj ]h =

∑
k

f kijHk [Xα,X−α]h = −
∑
k

gkαHk

[Xα,Xβ ]h =
{
Nα,βXα+β for α + β ∈ R
0 otherwise.

(2.7)

We call the zero-weight subalgebraH := g0[[h]] of gh spanned by the generators
{Hi}i=1,...,rankg the Cartan subalgebra even though, unlike in the classical case, [Hi,Hj ]h 6= 0.
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The quantum rootslα and rα are linear functionals onH. The structure constantslα(Hi),
rα(Hi), gkα, fij k andNαβ , are power series in the indeterminateh (in fact most of them turn
out to be polynomials inq1/2 = eh/2).

The quantum structure constants possess a number of symmetries [4, 6], many of which
are naturalq-generalizations of their classical counterparts. The basis can be chosen so that
the symmetries are given by:

lα = r̃α fij
k = −f̃j i k

Nα,β = −Ñβ,α gkα = −g̃k−α (2.8)

lα = −l̃−α f kij = −f̃ kij
Nα,β = −Ñ−α,−β (2.9)

Nα,β = qρ·βNβ,−α−β (2.10)∑
l

f ljkB(Hi,Hl) =
∑
l

f lj iB(Hl,Hk) (2.11)

−giαB(Hi,Hj ) = lα(Hj )q−ρ·α (2.12)

whereB is the Killing form, to be discussed in section 4,ρ is half the sum of the positive
roots, and∼ denotesq-conjugation, i.e. the operationh 7→ −h or equivalentlyq 7→ 1/q.
Note that in this paper we choose the basis for the quantum Lie algebra slightly differently
from [4] to satisfy

B(Xα,X−α) = q−ρ·α (2.13)

θ̃ (Xα) = −X−α θ̃(Hi) = −Hi (2.14)

S̃(Xα) = −qρ·α Xα S̃(Hi) = −Hi. (2.15)

The symmetries in (2.8) express theq-antisymmetry of the quantum Lie bracket

[a, b]Oh = −[bO, aO]h. (2.16)

The mapO : g[[h]] → g[[h]] is defined so that ifa = ∑
α ζαXα +

∑
i ηiHi is a general

element ofg[[h]], then aO = ∑
α ζ̃αXα +

∑
i η̃iHi . In the classical limitq-antisymmetry

expresses the antisymmetry of the Lie bracket. The origin of theq-antisymmetry of the
quantum Lie bracket was explained in [6].

2.4. Quantum structure constants as quantum Clebsch–Gordan coefficients

Let {va}a=1,...dimg be a basis forg[[h]]. The highest weight vectorv1 generating thisUh(g)-
module satisfies the relations,

π9(x+i )v
1 = 0 π9(hi)v

1 = 9(hi)v1 ∀i (2.17)

where9 is the highest root ofg andπ9 = π9(0) ◦ ϕ. Let P a(x−) be polynomials in thex−i
such thatva = π9(P a(x−))v1. The adjoint representation matrices in this basis are given
by

π9(x)va = vbπ9ab (x). (2.18)

Notation. Latin indices which appear as both upper and lower indices in the same expression
are summed over.
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We know thatg[[h]]⊗̂g[[h]] containsg[[h]] with unit multiplicity for the algebrasBl ,
Cl andDl . Hence, there exists a highest weight statev̂1 insideg[[h]]⊗̂g[[h]] that satisfies
the analogue of relations (2.17), namely

(π9 ⊗ π9)(1(x+i ))v̂1 = 0 (π9 ⊗ π9)(1(hi))v̂1 = 9(hi)v̂1 ∀i (2.19)

and v̂1 is the unique (up to rescaling) state with this property. The vectorsv̂a =
(π9 ⊗ π9)(1(P a(x−)))v̂1 form a basis forg[[h]] inside g[[h]]⊗̂g[[h]] such that

(π9 ⊗ π9)(1(x))v̂a = v̂bπ9ab (x) (2.20)

with the same representation matrices as in (2.18). We can expand the vectorsv̂a in terms
of the tensor product basis as

v̂a = vb ⊗ vcC9b 9c |a9. (2.21)

TheC9b
9
c |a9 ∈ C[[h]] are the Clebsch–Gordan coefficients. In the notation we often indicate

above or below an index which representation the index belongs to. We do this by giving the
highest weight of the representation, e.g. inC9b

9
c |a9 all indices belong to the representation

with highest weight9 (9 being the highest root of the Lie algebra), i.e. the adjoint
representation.

The embedding mapβ : g[[h]] → g[[h]]⊗̂g[[h]], defined byva → v̂a is aUh(g)-module
homomorphism, i.e.β ◦ π9(x) = (π9 ⊗ π9)(1(x)) ◦ β. This is easy to check:

(β ◦ π9(x))va = β(vbπ9ab (x)) = v̂bπ9ab (x) = (π9 ⊗ π9)(1(x))v̂a
= ((π9 ⊗ π9)(1(x)) ◦ β)va.

Both g[[h]] and Imβ are indecomposable modules and soβ (with its range restricted to
Imβ) is unique and invertible by the weak form of Schur’s lemma. We now define the
quantum Lie bracket [, ]h : g[[h]]⊗̂g[[h]] → g[[h]] to be zero on the module complement
of Imβ whilst on Imβ we define [, ]h = β−1. Then

[va, vb] = C9c |a9b9vc with C9d |b9c9C9b 9c |a9 = δad . (2.22)

Finally, becauseβ is a Uh(g)-module homomorphism,β−1 is also a Uh(g)-module
homomorphism. So we have shown that we can construct a bracket with the correct
properties.

Conclusion.To construct the quantum Lie algebragh associated tog we need to calculate
the inverse Clebsch–Gordan coefficients for the decompositiong[[h]]⊗̂g[[h]] into g[[h]].

3. Calculation of quantum Clebsch–Gordan coefficients

In this section we present our method for the calculation of the inverse quantum Clebsch–
Gordan coefficients for adjoint⊗ adjoint→ adjoint. We do not actually form adjoint⊗
adjoint. Instead we build the Clebsch–Gordan coefficients from vector⊗vector. The reason
for this lies in the relative simplicity of the vector representations ofUh(g) for Bl , Cl andDl .
The most attractive feature of the vector representation is that the classical representation
matrices for the Cartan subalgebra generators have eigenvalues+1, 0 or − 1. This means
that the classical representation matrices are also representation matrices forUh(g).

Let us first remind ourselves of the roots for the algebrasBl , Cl andDl . Let εi denote
the orthonormal basis vectors of the root space8. The roots forBl can be written as
±(εi ± εj ) with i 6= j and±εi with i 6 l. The simple roots areαi = εi − εi+1 for i < l
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andαl = εl . For Cl the roots are given by 2εi with i 6 l and±(εi ± εj ) with i 6= j . The
simple roots areαi = εi − εi+1 for i < l and αl = 2εl . For Dl the roots are given by
±(εi ± εj ) with i 6= j and the simple roots areαi = εi − εi+1 for i < l andαl = εl−1+ εl .
The vector representation is generated from the highest weight state, denoted by|1〉, whose
weight isε1. This corresponds toα1+ α2+ · · · + αl for Bl , α1+ α2+ · · · + 1

2αl for Cl , and
α1+ α2+ · · · + 1

2(αl−1+ αl) for Dl . The value ofρ · α is calculated easily from the value
of ρ · εi (i 6 l) as given below.

ρ · εi =


l − i + 1

2 for Bl
l − i + 1 for Cl
l − i for Dl .

(3.1)

In the following we will denote byV µ the representation space with highest weight
µ, e.g.V 9 is the adjoint representation,V ε1 the vector representation andV 0 the singlet
representation.

3.1. The Clebsch–Gordan coefficients for adjoint⊗ adjoint→ adjoint

To calculate these Clebsch–Gordan coefficients we start from the simpler decomposition
of the direct product representationV ε1 ⊗ V ε1 → V 2ε1 ⊕ V ε1+ε2 ⊕ V 0. We denote by
{vaµ}a=1,...,dimV µ the basis of a representation spaceV µ. Then the decomposition is described
by the inverse Clebsch–Gordan coefficients as follows

vaε1
⊗ vbε1

=
dimV 2ε1∑
c=1

vc2ε1
C2ε1
c |aε1

b
ε1
+

dimV ε1+ε2∑
c=1

vcε1+ε2
Cε1+ε2
c |aε1

b
ε1
+ v0C

0|aε1

b
ε1
. (3.2)

It is very convenient to introduce a graphical notation for the Clebsch–Gordan
coefficients and their inverses as in figure 1.

The composition of any number of intertwiners is again an intertwiner. We exploit
this fact to build the intertwiner for adjoint⊗ adjoint→ adjoint from the intertwiners for

Figure 1. Graphical representation of Clebsch–Gordan coefficients.
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vector⊗ vector into adjoint and singlet as shown in the following diagram

(3.3)

or equivalently

C9c |a9b9 = Cε1
i
ε1
j |a9Cε1

k
ε1
l |b9C0|jε1

k
ε1
C9c |iε1

l
ε1
. (3.4)

Let us show explicitly that theC9 |99 defined by this equation does indeed satisfy the
intertwining property

C9c |a
′
9
b′
9π

9
a′
a(x(1))π

9
b′
b(x(2)) = π9c c

′
(x)C9c′ |a9b9 ∀x ∈ Uh(g). (3.5)

Substituting (3.4) and using the intertwining property ofCε1ε1|9 , the left-hand side of (3.5)
becomes

π
ε1
i
i ′(x(1))π

ε1
j
j ′(x(2))C

ε1
i ′
ε1
j ′ |a9πε1

k
k′(x(3))π

ε1
l
l′(x(4))C

ε1
k′
ε1
l′ |b9C0|jε1

k
ε1
C9c |iε1

l
ε1
. (3.6)

The one-dimensional representation ofUh(g) is given by the co-unitε (recall ε(xy) =
ε(x)ε(y)∀x, y ∈ Uh(g)), and so

C0|jε1

k
ε1
π
ε1
j
j ′(x(2))π

ε1
k
k′(x(3)) = ε(x(2))C0|j ′ε1

k′
ε1
. (3.7)

Consequently one obtains (using co-commutativity)

C
ε1
i ′
ε1
j ′ |a9Cε1

k′
ε1
l′ |b9C0|j ′ε1

k′
ε1
C9c |iε1

l
ε1
π
ε1
i
i ′(x(1))ε(x(2))π

ε1
l
l′(x(3)) (3.8)

which is equivalent to the right-hand side of (3.5), if we use the intertwining property of
the Clebsch–Gordan coefficientC9 |ε1ε1 and the co-unit propertyε(x(1))x(2) = x.

3.2. The vector representationV ε1

We now turn our attention to the vector representation. We change the notation and denote
the basis states for the vector representation by|i〉 with i = 1, . . . ,2l for Cl andDl , and
i = 1, . . . ,2l + 1 for Bl . The matriceseij act on these basis states aseij |k〉 = δjk|i〉.

The states in the vector representation have the following weights:

|i〉 ←→ εi i 6 l
|l + 1〉 ←→ 0

|i〉 ←→ −εī l + 1< i 6 2l + 1

for the algebraBl (i = 2l + 2− i), and

|i〉 ←→ εi i 6 l
|i〉 ←→ −εī l < i 6 2l

for the algebrasCl andDl (ī = 2l + 1− i).
In the following theEi , Fi andHi are abbreviations forπε1(x+i ), π

ε1(x−i ) andπε1(hi).
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3.2.1.g = Bl .
Ei = ai,i+1 Fi = ai+1,i Hi = aii − ai+1,i+1 16 i < l

El =
√

2al,l+1 Fl =
√

2al+1,l Hl = 2al,l
(3.9)

where

aij = eij − eji i = 2l + 2− i. (3.10)

3.2.2.g = Cl .
Ei = ai,i+1 Fi = ai+1,i Hi = aii − ai+1,i+1 16 i < l

El = 1
2al,l+1 Fl = 1

2al+1,l Hl = al,l
(3.11)

where

aij = eij − (−1)i+j eji ī = 2l + 1− i.

3.2.3.g = Dl .

Ei = ai,i+1 Fi = ai+1,i Hi = aii − ai+1,i+1 16 i < l

El = al−1,l+1 Fl = al+1,l−1 Hl = al−1,l−1− al+1,l+1
(3.12)

where

aij = eij − eji ī = 2l + 1− i.

3.3. Direct product representationV ε1 ⊗ V ε1

The direct product representation is constructed in the usual manner via the coproduct. For
all the algebrasBl , Cl andDl , V ε1 ⊗ V ε1 has the following decomposition:

V ε1 ⊗ V ε1 = V 2ε1 ⊕ V ε1+ε2 ⊕ V 0 (3.13)

where V ε1+ε2 is the adjoint representation forBl and Dl , and V 2ε1 is the adjoint
representation forCl . In the following we give basis vectors for these submodules. The
expansion coefficients of these basis vectors in terms of theV ε1 basis vectors give the
quantum Clebsch–Gordan coefficients (cf (3.2)). We have chosen the basis of the vector
representation to be self-dual, namely〈i|j〉 = δij . Therefore the expansion coefficients
of the dual basis are the inverse quantum Clebsch–Gordan coefficients. We will use a
generalized Kronecker delta notation; for example,δi<j = 1 if i < j , 0 otherwise.

3.3.1.g = Bl .
• Basis forV 2ε1:

ωij = q1/2|i〉 ⊗ |j〉 + q−1/2|j〉 ⊗ |i〉 i < j 6= i
ωii = |i〉 ⊗ |i〉 16 i 6= l + 16 2l

ωi = q|i〉 ⊗ |i〉 + q−1|i〉 ⊗ |i〉 − (|i + 1〉 ⊗ |i + 1〉 + |i + 1〉 ⊗ |i + 1〉)δi<l
−(q1/2+ q−1/2)|l + 1〉 ⊗ |l + 1〉δil i 6 l

with corresponding dual basis

ωi = (q + q−1)−1

Dl

(
Dl−i

∑
j6i
(qj 〈j | ⊗ 〈j | + q−j 〈j | ⊗ 〈j |)− [i]q(q

1/2+ q−1/2)

×
(
〈l + 1| ⊗ 〈l + 1| −

l∑
j>i

(qj−l−1/2〈j | ⊗ 〈j | + ql+1/2−j 〈j | ⊗ 〈j |)
))
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where

Dk = qk+1/2− q−k−1/2

q1/2− q−1/2

and theq-numbers are given by

[i]q = qi − q−i
q − q−1

.

• Basis forV ε1+ε2:

vij = q−1/2|i〉 ⊗ |j〉 − q+1/2|j〉 ⊗ |i〉 i < j 6= i
vi = |i〉 ⊗ |i〉 − |i〉 ⊗ |i〉 − (q−1|i + 1〉 ⊗ |i + 1〉 − q|i + 1〉 ⊗ |i + 1〉)δi<l

+(q1/2− q−1/2)|l + 1〉 ⊗ |l + 1〉δil i 6 l
with corresponding dual basis

vi = (q + q−1)−1

Dl

(
[i]q(q

1/2− q−1/2)

(
〈l + 1| ⊗ 〈l + 1|

+
l∑

j>i

(qj−l−1/2〈j | ⊗ 〈j | + ql+1/2−j 〈j | ⊗ 〈j |)
)

+Dl−i
∑
j6i
(qj−1〈j | ⊗ 〈j | − q1−j 〈j | ⊗ 〈j |)

)
where

Dk = qk−1/2+ q1/2−k

q1/2+ q−1/2
.

• Basis forV 0:

t =
l∑
i=1

(qi−l−1/2|i〉 ⊗ |i〉 + q−i+l+1/2|i〉 ⊗ |i〉)+ |l + 1〉 ⊗ |l + 1〉.

3.3.2.g = Cl .
• Basis forV 2ε1:

vij = q1/2|i〉 ⊗ |j〉 + q−1/2|j〉 ⊗ |i〉 i < j 6= i
vii = |i〉 ⊗ |i〉 16 i 6 2l

vi = (−1)i(q|i〉 ⊗ |i〉 + q−1|i〉 ⊗ |i〉
+(|i + 1〉 ⊗ |i + 1〉 + |i + 1〉 ⊗ |i + 1〉)δi<l) 16 i 6 l

whose duals are given by

vi = (q + q−1)−1

Dl

(
Dl−i

∑
j6i
(−1)j (qj 〈j | ⊗ 〈j | + q−j 〈j | ⊗ 〈j |)

+[i]q
q − q−1

q + q−1

l∑
j>i

(−1)j (qj−l−1〈j | ⊗ 〈j | − ql+1−j 〈j | ⊗ 〈j |)
)

where

Dk = qk+1+ q−k−1

q + q−1
.
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Basis forV ε1+ε2:

ωij = q−1/2|i〉 ⊗ |j〉 − q1/2|j〉 ⊗ |i〉 i < j 6= i
ωi = (−1)i(|i〉 ⊗ |i〉 − |i〉 ⊗ |i〉

+q−1|i + 1〉 ⊗ |i + 1〉 − q|i + 1〉 ⊗ |i + 1〉) 16 i < l

whose corresponding duals are given by

ωi = (q + q−1)−1

[l]q

(
[l − i]q

∑
j6i
(−1)j (qj−1〈j | ⊗ 〈j | − q1−j 〈j | ⊗ 〈j |)

+[i]q
l∑

j>i

(−1)j−1(qj−l−1〈j | ⊗ 〈j | − ql+1−j 〈j | ⊗ 〈j |)
)
.

• Basis forV 0:

t =
l∑
i=1

(−1)l−i (qi−l−1|i〉 ⊗ |i〉 − ql+1−i |i〉 ⊗ |i〉).

3.3.3.g = Dl .
• Basis forV 2ε1:

ωii = |i〉 ⊗ |i〉 16 i 6 2l

ωij = q1/2|i〉 ⊗ |j〉 + q−1/2|j〉 ⊗ |i〉 i < j 6= i
ωi = q|i〉 ⊗ |i〉 + q−1|i〉 ⊗ |i〉 − (|i + 1〉 ⊗ |i + 1〉 + |i + 1〉 ⊗ |i + 1〉) 16 i < l

with corresponding duals

ωi = (q + q−1)−1

[l]q

(
[l − i]q

∑
j6i
(qj 〈j | ⊗ 〈j | + q−j 〈j | ⊗ 〈j |)

−[i]q
l∑

j>i

(qj−l〈j | ⊗ 〈j | + ql−j 〈j | ⊗ 〈j |)
)
.

Basis forV ε1+ε2:

vij = q−1/2|i〉 ⊗ |j〉 − q1/2|j〉 ⊗ |i〉 i < j 6= i
vi = |i〉 ⊗ |i〉 − |i〉 ⊗ |i〉 − (q−1|i + 1〉 ⊗ |i + 1〉 − q|i + 1〉 ⊗ |i + 1〉)δi<l,
with corresponding duals

vi = (q + q−1)−1

Dl

(
Dl−i

∑
j6i
(qj−1〈j | ⊗ 〈j | − q1−j 〈j | ⊗ 〈j |)

+ [i]q(q − q−1)

(q + q−1)

l∑
j>i

(qj−l〈j | ⊗ 〈j | + ql−j 〈j | ⊗ 〈j |)
)

where

Dk = (qk−1+ q1−k)
(q + q−1)

.

• Basis forV 0:

t =
l∑
i=1

(qi−l|i〉 ⊗ |i〉 + ql−i |i〉 ⊗ |i〉).
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Nearly all the elements are in place to construct the quantum structure constants. It only
remains to identify which vectors in the adjoint representation (embedded inV ε1 ⊗ V ε1)
correspond to the Cartan subalgebra and which to the roots. We have already discussed
the weights of the basis vectors of the vector representation and therefore we can calculate
trivially the weights of the basis vectors of the adjoint representation. This then fixes the
identification between the basis states of the adjoint representation given above and the basis
states for the quantum Lie algebra chosen in (1.1) up to rescaling. We have chosen the
scalings with hindsight so that the Killing form and the structure constants are as simple as
possible. We setξ = (q + q−1)〈t |t〉.

For Bl we have

Xεi−εj = ξ vij X−(εi−εj ) = ξ vji
Xεi+εj = ξ vij X−(εi+εj ) = ξ vji
Xεj = ξ vjl+1 X−εj = ξ vl+1j

Hj = ξ vj .

(3.14)

For Cl we have

Xεi−εj = (−1)j−iξ vij X−(εi−εj ) = ξ vji
Xεi+εj = −(−1)j−iξ vij X−(εi+εj ) = ξ vji
X2εj = −ξ (q + q−1)1/2vjj X−2εj = ξ (q + q−1)1/2vjj

Hi = (−1)l+1 ξ vi .

(3.15)

ForDl we have

Xεi−εj = ξ vij X−(εi−εj ) = ξvji
Xεi+εj = ξvij X−(εi+εj ) = ξvji
Hi = ξ vi for i < l

(3.16)

Hl = ξ (vl−1+ (q + q−1)vl). (3.17)

Here i < j 6 l, i = 2l − i + 2 for Bl and i = 2l − i + 1 for Cl andDl .
We could at this point give the structure constants. However, some of the structure

constants are just too complicated. We would like to present the structure constants as
concisely as possible. It turns out that with the introduction of the Killing form on our
quantum Lie algebras, the unwieldy structure constants simplify immensely.

4. The Killing form

In this section we introduce an invariant Killing form on every quantum Lie algebra. We
make the observation that it is an intertwiner for adjoint⊗ adjoint→ singlet, where by
singlet we mean the trivial one-dimensional representationV 0. This allows us to calculate
its values and we discover that they are simpleq-deformation of the classical ones. To
begin, we define the quantum analogue to the classical Killing form as follows.

Definition 4.1.The quantum Killing formis the mapB : Lh(g)⊗̂Lh(g)→ C[[h]] given by

B(a, b) = Tr9(a b u). (4.1)

Hereu is the the element ofUh(g) satisfying the propertiesu a u−1 = S2(a)∀a ∈ Uh(g)
and1(u) = u⊗u. The Tr9 denotes the trace over the adjoint representation. This definition



2008 G W Delius et al

for the quantum Killing form reduces to that of the classical Killing form in the classical
limit. It obviously exists and is non-degenerate because degeneracy would spoil the non-
degeneracy of the classical Killing form. The definition is motivated by the following
proposition.

Proposition 4.1.The Killing form is ad-invariant, i.e.

B([a, b]h, c) = B(a, [b, c]h) ∀a, b, c ∈ gh. (4.2)

We will prove this at the end of this section.
The following proposition, whose proof is trivial, informs us that unlike the classical

Killing form, the quantum Killing form is not symmetric.

Proposition 4.2.The quantum Killing formB is a non-degenerate, bilinear, nonsymmetric
form. Symmetry is replaced by the relation

B(a, b) = B(b, S2(a)). (4.3)

The square of the antipodeS2 acts on the basis elements ofLh(g) by multiplication by
a power ofq. ThereforeS2(Lh(g)) ⊂ Lh(g) and (4.3) makes sense.

The calculation of the Killing form is made simple when we realize that the Killing
form is an intertwiner for adjoint⊗ adjoint→ singlet.

Proposition 4.3.The Killing form defined in (4.1) is an intertwiner from adjoint⊗adjoint→
singlet, i.e.

B([c(1), a]h, [c(2), b]h) = ε(c)B(a, b) ∀a, b, c ∈ Lh(g). (4.4)

Proof. From the definition of the Killing form and Lie bracket, the left-hand side becomes

Tr9(c(1)aS(c(2))c(3)bS(c(4))u) = Tr9(c(1)abS(c(2))u)

= Tr9(c(1)abuS
−1(c(2)))

= Tr9(S
−1(c(2))c(1)abu) by cyclicity

= Tr9(ε(c)abu).

�

Such an intertwiner is unique up to rescaling. To see this leth, g : V 9 ⊗ V 9 → V 0 be
any two intertwiners. We represent them by light resp. heavy curves as follows

. (4.5)

We can compose eitherh or g with h−1 to obtain two intertwiners fromV 9 to itself.

.

(4.6)

By Schur’s lemma they both have to be proportional to the identity. Thus,h andg have to
be proportional.

One can also define a form on all ofUh(g) by equation (4.1). This gives the Rosso form
[13] which is the unique form onUh(g) for which (4.4) is valid for anya, b, c ∈ Uh(g).
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We calculate an intertwinerB from adjoint⊗ adjoint→ singlet using the Clebsch–
Gordan coefficients from section 3.3 according to the formula

(4.7)

whereN = (q + q−1)3 for Bl and Dl , andN = −(q + q−1)3 for Cl . By the above
propositionsB is proportional to the quantum Killing formB defined in (4.1).

The Killing form on the roots has the simple form

B(Xα,Xβ) = q−ρ·αδα,−β ∀α ∈ R. (4.8)

The Killing form on the Cartan subalgebra for the algebrasAl , Bl , Cl andDl respectively,
is given by

(Al)h : B(Hi,Hj ) =



[2]q −1
−1 [2]q −1

−1 [2]q −1
−1 [2]q


(4.9)

(Bl)h : B(Hi,Hj ) =



[2]q −1
−1 [2]q −1

−1 [2]q −1
−1 1


(4.10)

(Cl)h : B(Hi,Hj ) =



[2]q −1
−1 [2]q −1

−1 [2]q −1

−1 q2+q−2

q+q−1


(4.11)

(Dl)h : B(Hi,Hj ) =



[2]q −1
−1 [2]q −1

−1 [2]q −1 −1
−1 [2]q 0
−1 0 [2]q


. (4.12)

These expressions are surprisingly simpleq-deformations of the classical ones. In particular
B(Hi,Hj ) 6= 0 if and only if αi ·αj 6= 0. The Killing form for (Al)h was determined in [5].

We introduce the notationB(Hi,Hj ) = Bij , B(Xα,X−α) = Bα,−α. We defineBij

such thatBijBjk = δki andB−α,α such thatBα,−αB−α,α = 1, or, equivalently, introducing
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composite indicesp, q, r = {i, α},

. (4.13)

We give the formulae forBij with i 6 j , the remaining ones are obtained by symmetry,
Bji = Bij .

(Al)h : Bij = [i]q
ql−j+1− qj−l−1

ql+1− q−l−1
(4.14)

(Bl)h : Bij = [i]q
ql−j−1/2+ qj−l+1/2

ql−1/2+ q−l+1/2
(4.15)

(Cl)h : Bij = [i]q
ql−j+1+ qj−l−1

ql+1+ q−l−1
(4.16)

(Dl)h : Bij = [i]q
ql−j−1+ qj−l+1

ql−1+ q−l+1
i < l − 1, j < l

Bl−1,l−1 = Bl,l = [l]q
(q + q−1)−1

ql−1+ q−l+1

Bl−1,l = [l − 2]q
(q + q−1)−1

ql−1+ q−l+1

Bi,l = Bi,l−1. (4.17)

We now give the proof of proposition 4.1, i.e. we will show that

B([a, b]h, c) = B(a, [b, c]h) ∀a, b, c ∈ gh. (4.18)

Proof. Because the intertwiner from adjoint to adjoint⊗ adjoint is unique up to rescaling
we have

. (4.19)

The constant of proportionalityA ∈ C[[h]] can be determined by settingp = r = Xα and
q = Hi . Doing this we obtain the relation

−rα = ABα,−αl−α(Hi)B−α,α.
UsingBα,−αB−α,α = 1 and the relationl−α = −rα from (2.8) and (2.9) we see thatA = 1.

We now write the left-hand side of (4.18) in graphical form and use the above
identity (4.19) to manipulate the diagram to the right-hand side of (4.18).

. (4.20)

�
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Besides the Killing form there exists another natural bilinear form〈, 〉 on the quantum
Lie algebras. This is the unique (up to rescaling) non-degenerate bilinear form which
satisfies

〈[a, b], c〉 = 〈b, [a†, c]〉 ∀a, b, c ∈ Lh(g) (4.21)

where† denotes the algebra antiautomorphism ofUh(g) defined by

(x±i )
† = x∓i h

†
i = hi. (4.22)

(If we define† to be antilinear then the form〈, 〉 has to be sesquilinear.) On the quantum
Lie algebra generators it acts as

X†α = q−ρ·αX−α H
†
i = Hi. (4.23)

The form〈, 〉 is symmetric and is given by

〈Xα,Xβ〉 = δαβ 〈Hi,Hj 〉 = Bij 〈Xα,Hi〉 = 〈Hi,Xα〉 = 0. (4.24)

5. The quantum structure constants

We only give the minimal set of the structure constants. The remaining ones can be
calculated using the symmetry properties, see equations (2.8)–(2.12). Thus, we give only
the left quantum rootslα for positiveα. From these, those for negativeα as well as the
rα andgαk can be obtained using equations (2.8), (2.9) and (2.12). The structure constants
fij

k for the Cartan subalgebra simplify dramatically if one lowers the last index using the
Killing form, i.e. fijk := fij

mB(Hm,Hk). Since the Killing form is symmetric on the
Cartan subalgebra it is easy to see, using (2.8), (2.9) and (2.11), thatfijk is completely
symmetric. We also observed thatfijk 6= 0 iff αi · αj 6= 0. This implies in particular
that the structure constantsfijk are non-zero only if at least two of the indices are the
same. (This is so becausefijk is only non-zero iffijk, fikj and fjki are non-zero. In
other words,fijk is non-zero if there exist three simple roots such thatαi · αj , αi · αk
and αj · αk are non-zero. There exist no three distinct simple roots that satisfy this
requirement.) So below we give only a fewf ’s, all others can be obtained by symmetry
or are zero. We give only enough of theNα,β so that the others can be obtained using
(2.8)–(2.10).

5.1. The quantum Lie algebra (Bl)h

The quantum roots are

lεj−εk (Hi) = ql−i−1/2δij − qi−l+1/2δik − ql−i−5/2δi+1,j + qi−l+5/2δi+1,k

lεj+εk (Hi) = ql−i−1/2δij + ql−i+3/2δik − ql−i−5/2δi+1,j − ql−i−1/2δi+1,k

lεk (Hi) = ql−i−1/2δik − ql−i−5/2δi+1,k + (q3/2− q1/2)δil

(5.1)

wherej < k 6 l, i 6 l. The structure constants for the Cartan subalgebra are

fiii = (ql−i−3/2+ qi−l+3/2)(q2− q−2)

flll = (q + q−1)(q1/2− q−1/2)− (q1/2− q−1/2)

fi±1,i±1,i = ∓(ql−i−3/2− qi−l+3/2).

(5.2)
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The remaining structure constants are determined by

Nεi−εj ,εk−εm = ql−k−1δjk − qm−l+1δim

Nεi−εj ,εk+εm = ql−k−1δjk + (ql−m+1δi>k − ql−mδi<k)δjm
Nεi−εj ,εm = ql−m−1δjm

Nεj ,εm = q1/2δj>m − q−1/2δj<m

(5.3)

wherei < j 6 l andk < m 6 l.

5.2. The quantum Lie algebra (Cl)h

The quantum roots are

lεj−εk (Hi) = ql−i+3δij − qi−l−3δik − ql−i+1δi+1,j + qi−l−1δi+1,k

lεj+εk (Hi) = ql−i+3δij + ql−i+1δik − ql−i+1δi+1,j − ql−i−1δi+1,k

l2εk (Hi) = (q + q−1)(ql−i+2δik − ql−iδi+1,k)

(5.4)

wherej < k 6 l, i 6 l. The structure constants for the Cartan subalgebra are

fiii = (q2− q−2)(ql−i+2+ qi−l−2)

fi±1,i±1,i = ∓(ql−i+2− qi−l−2).
(5.5)

The remaining structure constants are determined by

Nεi−εj ,εk−εm = (−1)l−iqi−l−5/2δim − (−1)l−j ql−j+5/2δjk

Nεi−εj ,εk+εm = −(−1)l−j {ql−j+5/2δjk + (ql−j+3/2δi<k

+(q + q−1)1/2ql−j+1δik + ql−j+1/2δi>k)δjm}
Nεi−εj ,2εm = −(−1)l−j (q + q−1)1/2ql−j+2δjm

Nεi−εj ,−2εm = (−1)l−j (q + q−1)1/2qi−l−1δim

(5.6)

wherei < j 6 l andk < m 6 l.

5.3. The quantum Lie algebra (Dl)h

The quantum roots are

lεj−εk (Hi) = (ql−i−1δij − qi−l+1δik − ql−i−3δi+1,j + qi−l+3δi+1,k)δi<l

+(−δik + δi−1,j − δi−1,k)δil

lεj+εk (Hi) = (ql−i−1δij + ql−i+1δik − ql−i−3δi+1,j − ql−i−1δi+1,k)δi<l

+(q2δik + δi−1,j + q2δi−1,k)δil

(5.7)

wherej < k 6 l, i 6 l. The structure constants for the Cartan subalgebra are

fiii = (q2− q−2)(ql−i−2+ qi−l+2)

fj+1,j+1,j = −(ql−j−2− qj−l+2)

fi−1,i−1,i = +(ql−i−2− qi−l+2)

(5.8)

wherei < l, j < l−1. Because of the Dynkin diagram automorphismτ , which interchanges
Hl andHl−1, we do not need to give the structure constants involvingHl , they are equal to
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those involvingHl−1. Thef ’s involving bothl andl−1 are zero. The remaining structure
constants are determined by

Nεi−εj ,εk−εm = ql−j−3/2δjk − qi−l+3/2δim

Nεi−εj ,εk+εm = ql−j−3/2δjk − (ql−j−1/2δi<k − ql−j+1/2δi>k)δjm
(5.9)

wherei < j 6 l andk < m 6 l.

5.4. The quantum Lie algebras (Al)h

For completeness we also give the structure constants for the quantum Lie algebras
associated tog = Al which were determined by a different method in [5], see also [6].
There is a family of quantum Lie algebras(Al)h(χ) depending on a parameterχ . This is
due to the fact that in the case ofAl , the adjoint representation appears in adjoint⊗ adjoint
with multiplicity 2. The parameterχ can be written as a fractionχ = s/t with s, t ∈ C[[h]]
and with the restriction that(s + t)−1 ∈ C[[h]]. Al is isomorphic tosll+1.

The quantum roots are

lεj−εk (Hi) = (q1−iδij − q−1−iδi+1,j )(s + t ql+1)− (qi−1δik − qi+1δi+1,k)(s + t q−l−1)

(5.10)

wherej 6= k 6 l + 1, i 6 l. The structure constants for the Cartan subalgebra are

fiii = s(q2− q−2)(q−i + qi)+ t (q2− q−2)(ql−i+1+ qi−l−1)

fi±1,i±1,i = ∓s(q−i − qi)∓ t (ql−i+1− qi−l−1)
(5.11)

wherei 6 l. Finally,

Nεi−εj ,εk−εm = q1/2−j (s + t ql+1)δjk − qi−1/2(s + t q−l−1)δim (5.12)

wherei 6= j 6 l + 1 andk 6= m 6 l + 1.

5.5. The structure of the Cartan subalgebra

One of the novel features of quantum Lie algebras is the non-vanishing of the quantum
Lie bracket between elements of the Cartan subalgebra. Our explicit results for the
corresponding structure constantsfijk given above have lead us to the following observation:

fiij = Bij (lαj (Hi)− rαj (Hi)). (5.13)

In other words, the Lie brackets of the Cartan subalgebra elements are given by the amount
of split between left and right quantum roots. In the following we will abbreviate this
q-antisymmetric combination of left and right roots byaα := lα − rα. The Lie bracket
relations are then

[Hi,Hj ]h = Bij (aαi (Hj )Hj + aαj (Hi)H i). (5.14)

5.6. The quantum root space

The quantum root spaceH∗ is the dual space to the Cartan subalgebra, i.e. it is the space
of linear functionals onH with values inC[[h]]. The left and right quantum rootslα and
rα are particular elements ofH∗.

The Killing form B on H provides a natural pairing between elementsH ∈ H and
linear functionalsvH ∈ H∗ defined by

vH (H
′) := B(H,H ′) ∀H ′ ∈ H. (5.15)
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Let vi := vHi be the elements ofH∗ dually paired with the generatorsHi of H. Then
{vi}i=1,...,rankg is a basis forH∗. With our choice of theHi the vi are proportional to the
q-symmetric combination of the simple left and right quantum roots,

vi(Hj ) := B(Hi,Hj ) = 1

ξi
(lαi (Hj )+ rαi (Hj )). (5.16)

The factors of proportionalityξi are given by

Bl : ξi = qi−l+3/2+ ql−i−3/2 (5.17)

Cl : ξi = qi−l−2+ ql−i+2 for i < l ξl = (q + q−1)2 (5.18)

Dl : ξi = qi−l+2+ ql−i−2 for i < l ξl = ξl−1 = (q + q−1). (5.19)

These were chosen so as to make the structure constants as simple as possible.
There is a natural inner product onH∗ given by

〈vH , vH ′ 〉 := B(H,H ′). (5.20)

On our basis this gives〈vi, vj 〉 = Bij . Thus, we have chosen our basis vectors to all have
length squared equal to [2]q = (q + q−1) except forvl for Bl andCl . The simple quantum
rootslαi on the other hand, all have different lengths, quite unlike the classical simple roots.

6. Other relations between the structure constants

We have already observed that the product of any number of intertwiners is still an
intertwiner. This observation is indeed a very powerful one. Below we will use it to
derive some interesting relations between the structure constants.

The calculations leading to our results for the structure constants presented in the
previous section were rather lengthy. It is therefore very important to have powerful
checks on the correctness of the results. The structure constants in the classical limit
have been compared with the classical structure constants and they agree. We have also
verified the symmetry relations in section 2.1 for the quantum structure constants. The
relations derived in this section provide further checks. For quantum Lie algebras of
low rank we have checked that these relations are satisfied by our results. We have
made the Mathematica notebooks containing these calculations available on the Internet
at http://www.mth.kcl.ac.uk/∼delius/q-lie/

In the following we use the intertwiners from adjoint⊗ adjoint → adjoint and
singlet→ adjoint⊗ adjoint. This second intertwiner is the inverse of the Killing form.
Adopting the same notation as in section 4 we denote this intertwiner byBpq and define
it so thatBprBrq = δqp . Thus in particularBα,−α = q−ρ·α. Bij (given in equations (4.14)–
(4.17)) can be used to raise the indices which are lowered withBij .

We come now to the derivation of two new relations. They are obtained by constructing
intertwiners singlet→ adjoint and adjoint→ adjoint. Further relations can easily be derived
by the same method.

6.1. The intertwiner singlet→ adjoint

An intertwiner from the singlet to the adjoint is given in figure 2(a). This intertwiner should
be zero and so we immediately arrive at a relation between the structure constants. Setting
p = k we have∑

α

−gαkBα,−α + f kijBij = 0. (6.1)
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Figure 2. Graphical representation of the relations. (a) There is no non-zero intertwiner from
singlet to adjoint. (b) An intertwiner from adjoint to adjoint is proportional to the identity.

We multiply this equation byBkm and sum overk. We useBα,−α = Bα,−α = q−ρ·α and
relation (2.12) betweengαk and the quantum roots to obtain∑

α

lα(Hm)q
−2ρ·α +

∑
i

fmi
i = 0. (6.2)

6.2. The intertwiner adjoint→ adjoint

The intertwiner from adjoint to adjoint is given in figure 2(b). This intertwiner should be
proportional to the identity map. Settingp = q = α we have∑

β

Nα,βNα+β,−βBβ,−β + rα(Hi)rα(Hj )Bij − gαilα(Hi)B−α,α = A′. (6.3)

Using once again relation (2.12) betweengαi and the quantum roots, the relations between
theNαβ , and the value ofBα,−α the above equations become∑
β

(Nα,β)
2q−2ρ·β + rα(Hi)rα(Hj )Bij + lα(Hi)lα(Hj )Bij = A′ ∀α ∈ R. (6.4)

Settingp = i andq = j in figure 2(b) we obtain

−
∑
α

lα(Hi)B
α,−α gαj + fikmBklfmlj = A′δji (6.5)

which can be re-expressed as∑
α

lα(Hi)lα(Hj )+ fimlfmlj = A′Bij . (6.6)

7. Discussion

We have shown how to calculate the structure constants of the quantum Lie algebras
associated toBl , Cl and Dl . These calculations were rendered manageable by the
observation that the quantum structure constants are just the inverse Clebsch–Gordan
coefficients for adjoint⊗ adjoint→ adjoint. The structure constants satisfy the symmetries
discovered in [4]. We have introduced an ad-invariant Killing form and shown that
it is proportional to the intertwiner from adjoint⊗ adjoint → singlet. Because the
composition of intertwiners is also an intertwiner we were able to calculate many intertwiners
indirectly. For example we calculated the Killing form by building the intertwiner from
adjoint⊗ adjoint→ singlet in terms of the intertwiners from vector⊗ vector into adjoint
and singlet. This meant that we did not have to evaluate the usual trace over the adjoint
representation.

As is well known, the structure constants of the simple complex Lie algebras are
determined entirely in terms of their simple roots. Eventually we would hope to arrive
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at a similar result for the quantum Lie algebras. In this paper we have come one step closer
to this goal by our observation that the structure constantsfijk of the Cartan subalgebra
are completely determined in terms of the quantum roots according to equation (5.13). The
Killing form Bij is expressed in terms of thelα by equation (5.16). Already in [4] it was
found that the left quantum rootslα for positiveα are enough to determine those for negative
α by equation (2.9), therα by (2.8) and thegαk by equation (2.12). Thus now all quantum
Lie bracket relations are determined by the left quantum rootslα for positiveα and theNαβ .
What is still missing is a deeper understanding of theNαβ and of how to obtain the higher
quantum roots from the simple quantum roots. For recent progress see [11].

The expressions for the quantum roots in equations (5.1), (5.4) and (5.7) are
unexpectedly simple. If one writes the classical expressions for the roots in the same form,
one notices that generically the quantum expressions are obtained from these by replacing
every 1 by a power ofq and every 2 by(q + q−1) times a power ofq. Thus, in particular
lα(Hi) 6= 0 if and only if classicallyα(Hi) 6= 0. There is, however, one exception to this
simplicity: in (Bl)h we have found thatlεk (Hl) 6= 0 also fork < l − 1.

Also the matrices (4.10)–(4.12) describing the quantum Killing form on the Cartan
subalgebras are surprisingly simple. In particular we find that only those entries in the
matrices are non-zero which are also non-zero classically.

There still remain a lot of unanswered questions. In particular: What is a good axiomatic
setting for the theory of quantum Lie algebras. How should oneq-deform the Jacobi
identity? What characterizes the quantum root system? What areq-Weyl reflections?
How does one define representations of these non-associative algebras? And many more.
For a more complete bibliography and more recent results on quantum Lie algebras see
http://www.mth.kcl.ac.uk/̃delius/q-lie/
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Appendix A. Quantized enveloping algebras

For an introduction to Lie algebras consult [14, 12] and for quantized enveloping algebras
consult [3].

Definition A.1.Let g be a finite-dimensional simple complex Lie algebra with symmetrizable
Cartan matrixaij . Thequantized enveloping algebraUh(g) is the unital associative algebra
overC[[h]] (completed in theh-adic topology) with generatorsx+i , x

−
i , hi , 16 i 6 rank(g)

and relations
hihj = hjhi hix

±
j − x±j hi = ±aij x±j

x+i x
−
j − x−j x+i = δij

q
hi
i − q−hii

qi − q−1
i

1−aij∑
k=0

(−1)k
[

1− aij
k

]
qi

(x±i )
kx±j (x

±
i )

1−aij−k = 0 i 6= j.

(A.1)

Here

[
a

b

]
q

are theq-binomial coefficients.

We have definedqi = edih where thedi are chosen so thatdiaij is a symmetric matrix.
We choosedi = α2

i /2 where the simple roots are as given at the beginning of section 3. An
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alternative convention is to choosedi to be coprime integers. In the case of the algebraBl
these two conventions differ and our conventions lead todi = 1 for i = 1, . . . , l − 1 and
dl = 1

2. The Cartan matrix is defined to beaij = 2αi · αj/α2
i .

The Hopf algebra structure ofUh(g) is given by the comultiplication1 : Uh(g) →
Uh(g)⊗̂Uh(g) defined by

1(hi) = hi⊗̂1+ 1⊗̂hi (A.2)

1(x±i ) = x±i ⊗̂q−hi/2i + qhi/2i ⊗̂x±i (A.3)

and the antipodeS and co-unitε defined by

S(hi) = −hi S(x±i ) = −q∓1
i x±i ε(hi) = ε(x±i ) = 0. (A.4)

Definition A.2.The Cartan involutionθ : Uh(g)→ Uh(g) is given by the formulae

θ(x±i ) = −x∓i θ(hi) = −hi. (A.5)

It is a Hopf-algebra isomorphism:Uh(g)→ U
op
h (g) whereUop

h (g) is the opposite Hopf
algebra, whose Hopf structure is described by the opposite coproduct1op and the inverse
antipodeS−1.

Definition A.3.q-conjugation ∼: C[[h]] → C[[h]], a 7→ ã is the C-linear ring
automorphism defined bỹh = −h.

Appendix B. Modified Schur’s lemma

Lemma B.1 (Schur’s lemma).Let V [[h]] andW [[h]] be two finite-dimensional indecompos-
ableUh(g)-modules and letf, g : V [[h]] → W [[h]] be twoUh(g)-module homomorphism.
Then:

(1) if f (modh) 6= 0 thenf is an isomorphism;
(2) ∃c ∈ C[[h]] such thatf = cg or g = cf .

Proof. (1) Ker(f ) is a submodule ofV [[h]]. However, V [[h]] is an indecomposable
Uh(g)-module and so Ker(f ) must be of the formcV [[h]] for some non-invertible
c ∈ C[[h]]. However, if Ker(f ) has this form thenf (cx) = cf (x) = 0∀x ∈ V [[h]],
i.e. Ker(f ) = V [[h]]. Therefore Ker(f ) = 0. Equally, Im(f ) is a submodule ofW [[h]]
and so (2) Letv0 andw0 be the highest weight states inV andW . Then becausef, g are
Uh(g)-homomorphismsf (v0) andg(v0) must also be highest weight states inW [[h]], that
is ∃c1, c2 ∈ C[[h]] such thatf (v0) = c2w0 andg(v0) = c1w0. Then(c1f − c2g)(v0) = 0
which means thatc1f − c2g is not an isomorphism and so by the first part of the lemma
c1f −c2g = 0(modh). By the same argumenth−1(c1f −c2g) = 0, etc. Hence,c1f = c2g.
�

Appendix C. Clebsch–Gordan coefficients

Let (πµ, V µ) and (πν, V ν) be two indecomposableUh(g)-modules. Consider an
indecomposableUh(g)-module (πλ, V λ) homomorphically embedded inV µ ⊗ V ν . As a
basis forV λ we choose{vaλ}. So we have for the action ofUh(g) on V λ

πλ(x)vcλ = vdλπλd c(x) = πλd c(x)Cµνa′b′ |dλva
′
µ ⊗ vb

′
ν (C.1)
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where {va′µ ⊗ vb
′
ν } is the natural basis onV µ ⊗ V ν and Cµνa′b′ |dλ are the Clebsch–Gordan

coefficients describing the embeddingV λ → V µ ⊗ V ν . The action ofUh(g) on V µ ⊗ V ν
is defined using the coproduct, i.e.

πλ(x)vcλ = Cµνab |cλ(πµ ⊗ πν)(1(x))(vaµ ⊗ vbν )
= Cµνab |cλ(va

′
µ ⊗ vb

′
ν )(π

µa

a′ ⊗ πνbb′ )(1(x)).
(C.2)

These two actions ofUh(g) coincide and so the Clebsch–Gordan coefficients satisfy the
intertwiner property

πλ(x)cdC
µν

a′b′ |dλ = Cµνab |cλ(πµaa′ ⊗ πνbb′ )(1(x)). (C.3)

Appendix D. The (C2)h algebra

In this appendix we compare our results for(C2)h with the results given in [4]. The Cartan
matrix for C2 is(

2 −2
−1 2

)
(D.1)

and the positive roots areα1, α2, α1 + α2, and 2α1 + α2. The left quantum roots are given
by

lα1(H1, H2) = ((q + q−1)(q2− 1+ q−2)q,−q−3))

lα2(H1, H2) = (−(q + q−1)q, q2(q + q−1))

lα1+α2(H1, H2) = ((q + q−1)(q − q−1)q2, q))

l2α1+α2(H1, H2) = ((q + q−1)q3, 0).

(D.2)

We agree with the previous results in [4] if we firstq-conjugate our results and then make
the following transformations:

H1 −→ l
(q−2+ q2− 1)

q + q−1
h1

H2 −→ lh2

(D.3)

wherel is as defined in [4] andh1, h2 are the Cartan subalgebra generators used in [4].
In table D.1 we giveNα,β/(q + q−1)1/2 for α positive. The rows are labelled byα and

the columns are labelled byβ. TheN−α,β are equal to−Ñα,−β .
We get agreement with [4] if we firstq-conjugate and then make the following

transformations:
X±α1 −→ ∓ξX±α1

X±α2 −→ ∓ξX±α2

X±(α1+α2) −→ ∓ξX±(α1+α2)

X±(2α1+α2) −→ ±ξX±(2α1+α2)

(D.4)

Table D.1.

2α1 + α2 α1 + α2 α2 α1 −α1 −α2 −α1 − α2 −2α1 − α2

2α1 + α2 0 0 0 0 q−2 0 −q−2 0
α1 + α2 0 0 0 q−1 q−3 −1 0 −q−2

α2 0 0 0 q−2 0 0 −1 0
α1 0 −q −q2 0 0 0 q−3 q−2
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whereξ = −(q + q−1)1/2(q2 − 1+ q−2). The algebra(C2)h is isomorphic to the algebra
(B2)2h. The change inh is due to our choice of conventions fordi in the definition ofUh(g)
in appendix A.
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